Term Paper : My best View of a Topic in Software Engineering

Software Engineering Economics
Vazhoor Bhasul Vyas (Group S7)
A6452624@ntu.edu.sg

Abstract
Economic analysis techniques and software cost estimation have become an integral part of the planning stage of any software engineering activity. This paper focuses on the article on Software Engineering Economics by Dr. Barry Boehm (IEEE Trans on Software Engg Vol 10) and summarizes the trends in software engineering economics and provides an overview of economic analysis techniques, software cost estimation, the major estimation techniques, algorithmic cost models available and their applicability to software engineering and management. The paper further discusses the various recent contributions to the topic and possible future extensions into the field. The paper also includes my comments on the results presented in the IEEE journal and its future relevance.
Focus on ‘Software Engineering Economics’, IEEE Journal Entry by Dr. Barry Boehm
Introduction
The software engineering economics field has evolved a number of techniques for dealing with various decision issues (cost-benefit analysis, present value analysis, risk analysis etc.). The article dealt with an overview of these techniques and their applicability to software engineering.

Another critical problem underlying all applications of economic techniques to software engineering is the problem of estimating software costs. The journal entry dealt with this field by outlining the Major Cost Estimation Techniques, Algorithmic Models for Software Engineering and by dealing with the outstanding research issues in Software Cost estimation. The paper was concluded by summarizing the major benefits of software engineering economics and commenting on the major changes awaiting the field.

My Outline of the Journal Entry
The paper outlines the main economic analysis techniques and the major pitfalls. The Expected Value techniques, in which we estimate the possibilities of occurance of each outcome and complete the payoff of each option:
EV = Probability (success) * Payoff (success) + Probability (failure) * Payoff (unsuccessful)

These techniques are better than the decision making techniques under complete uncertainty but they still involve a great deal of risk if the probability of failure is considerably higher than our estimate of it. Information buying techniques such as Prototyping are ways of reducing the uncertainty. The amount of information buying that can be considered enough is determined by the Baye’s Law to estimate the appropriate level of investment in a prototype. The paper concludes that as software engineers it is often worth paying for information because it helps us make better decisions.

The most important and critical of the input data provided for software engineering economics decision analysis are the estimates of the cost of a proposed software project. The various Cost estimation techniques are as follows:
Algorithmic model: Its strengths are that it is objective, repeatable, efficient, good for sensitivity analysis and objectively calibrated to experience. Its weaknesses are its subjective inputs, assessment of exceptional circumstances and its calibration to past not future.
Expert Judgment: Its assessment of representative interactions and exceptional circumstances are its strengths whereas its weaknesses lie in its biases and incomplete recall.

Analogy: Its strength is that it is based on representative experience and its weakness is its representative ness of experience.

Parkinson: It correlates with some experience. Its weakness is that it reinforces poor practice.

Price to win: Its advantage is that it often gets the contract but its major disadvantage is that it generally produces large overruns.
Top-down: The major advantage of this method is its system level focus and its efficiency. Its disadvantages are that it is less stable and has less detailed basis.
Bottom-up: It has a more detailed basis; it is more stable and fosters individual commitment. Its major disadvantages are due to the facts that it may overlook system level costs and it requires more effort.
There are fundamental limitations of the Software Cost Estimation techniques because until a software specification is fully defined it actually represents a range of software products and a corresponding range of software development costs. Thus the accuracy with which software cost estimates can be made is a function of the software life cycle or the level of knowledge of what the software is intended to do. This can thus vary from a factor of 4 to around 1.25.

ALGORITHMIC MODELS: Since the earliest days of the software field, people have been trying to develop algorithmic models to estimate software costs. Some such algorithmic models are summarized below:

The Putnam SLIM Model [44],[45]: It is a commercially available software product based on Putnam’s analysis of software lifecycle in terms of the Rayleigh distribution of project personnel level versus time. The basic effort macro-estimation model used in SLIM is
Ss = CkK1/3td4/3 where Ss = number of delivered source instructions, k = life cycle effort in man-years, td = development time in years and Ck = technology constant.
The RCA PRICE S MODEL: PRICE S is a commercially available macro cost-estimation model developed primarily for embedded system applications. PRICE S has recently added a software life-cycle support cost estimation capability called PRICE SL [34].
The Constructive Cost Model (COCOMO) [11]: Boehm's approach is called COCOMO for Constructive Cost Model, so named because the cost of the whole product is constructed from the costs of its components. There are three versions of COCOMO that operate at different levels of abstraction: Basic COCOMO, Intermediate COCOMO, and Detailed COCOMO. At each level, simplifying assumptions are made concerning the nature of software products and their production. As the models move toward increasing detail, the complexity of the estimation process and the number of parameters involved increase. Basically, COCOMO produces estimates of the duration and cost of the software product based on the size of the product, the quality of the project team, the stability of the development system, and other factors.
Basic COCOMO:
E = ab (KLOC)bb

D = cb (E)db
In Basic COCOMO, it is further assumed that all instructions cost the same. This assumption in particular will be refined in the more detailed versions of the approach. The Basic COCOMO model, then, computes the effort in man-months (MM) and the time in months to develop, TDEV, as follows:

 MM = 2.4 * KDSI^(1.05)

 TDEV = 2.5 * MM^(0.38)

Interesting points about these equations include the fact that the exponent on KDSI in the first formula is almost 1.0, so in this model the effort is only slightly more than a linear function of code size. The TDEV estimate assumes "optimum" staffing at each stage of the project. This usually means that more people are working on the project in the middle than at the beginning or at the end; the staffing variation is more pronounced in very complex projects in which a relatively few people must be involved in problem definition and integration compared to the many people who can be involved in coding and documentation activity simultaneously.
Intermediate COCOMO:
E = ai(KLOC)bi * EAF
Intermediate COCOMO estimates the cost of a proposed software product in the following way:

· A nominal development effort is estimated as a function of the product’s size in delivered source instructions in thousands and the project’s development mode.

· A set of effort multipliers are determined from the product’s ratings on a set of 15 cost driver attributes.

· The estimated development effort is obtained by multiplying the nominal effort estimate by all the product’s effort multipliers.

· Additional factors can be used to determine dollar costs, development schedules, phase and activity distributions, computer costs, annual maintenance costs and other elements from the development effort estimate.

Detailed procedures for the calculation are explained elaborately in the journal entry.
2 Related Lecture Topic
 The related lecture topic is ‘Introduction to Software Cost Estimation’ where the COCOMO model and the Function Point (FP) model of software cost estimation is extensively discussed.
3 New contributions that has been made to this field of software engineering
The original COCOMO model was first published by Dr. Barry Boehm in 1981, and reflected the software development practices of the day. In the ensuing decade and a half, software development techniques changed dramatically. These changes included a move away from mainframe overnight batch processing to desktop-based real-time turnaround; a greatly increased emphasis on reusing existing software and building new systems using off-the-shelf software components; and spending as much effort to design and manage the software development process as was once spent creating the software product.

This required us to reinvent the model for the 1990s. After several years and the combined efforts of USC-CSE, IRUS at UC Irvine, and the COCOMO II Project Affiliate Organizations, the result is COCOMO II, a revised cost estimation model reflecting the changes in professional software development practice that have come about since the 1970s.
4 Related work published

	Author(s)
	Dr. Barry W Boehm

	Year
	1981

	Book
	Software Engineering Economics

	Description
	The book written by the author of the journal entry explains the fundamental concepts of microeconomics and presents the COCOMO model of calibrated cost estimation.

	Relation to article
	The COCOMO model is the most important cost estimation models considered in the journal.

	Author(s)
	Boehm, B., and W. Royce

	Year
	1989

	Book
	Ada COCOMO and the Ada Process Model

	Description
	The book describes a more refined version of the COCOMO model. Ada COCOMO added a capability for estimating the costs and schedules for incremental software development.

	Relation to article
	This is an extension to the cost estimation models in the article.

	Author(s)
	Banker, R., H. Chang and C. Kemerer

	Year
	1994

	Article
	Evidence on Economies of Scale in Software Development, Information and Software Technology

	Description
	The article develops a model of the relationship between software structure and software enhancement costs and errors.

	Relation to article
	The article furthers research in software engineering economics and finds that high investment in software quality practices such as structured design is not economically efficient in all situations.

5 Relation to My lab project
The software engineering economics analysis, cost estimation techniques where very useful for the cost estimation of my lab project. The Function Point approach of cost estimation was used since it is independent of programming language and since an object-oriented approach was being used for the software and FP approach better accommodates software reuse.

6 Conclusions, Comments and Possible Future Work

POSSIBLE FUTURE EXTENSION OF IDEAS IN ARTICLE
The following areas of Software Engineering Economics could be considered for future research:

· Software Size Estimation: The function point approach and the sizing estimation model can be improved upon to provide a more sound sizing estimate.

· Software Size and Complexity metrics: Many metrics have been developed to replace delivered source instruction (DSI) but they are yet to exhibit any practical superiority to DSI.

· Software Cost Driver attributes and their effects

· Software Cost Model Analysis and Refinement
COMMENTS ON THE NOTATIONS/DIAGRAMS USED IN THE ARTICLE

The article contained numerous tables which helped present the large amounts of technical and statistical information clearly. The article also contained various graphs which helped demonstrate the strengths and weaknesses of the various cost estimation techniques.

comments on the results presented in the paper and its relevance to the immediate future

The results presented in the paper establish the benefits of a good software estimation model that provides a clear and consistent universe of discourse within which many of the software engineering issues arising throughout the software life cycle can be addressed. The paper also established the usefulness of the COCOMO model in achieving the same. More research has been carried out in the COCOMO model since then and the Ada COCOMO model and the COCOMO 2 model have been released. There is still room for a lot of improvement in this relatively new field. Software Cost Estimation technology provides an absolutely essential foundation for software project planning and control. Unless a software project has clear definitions of its key milestones and realistic estimates of the time and money it will take to achieve them, there is no way that a project manager can tell whether his project is under control or not. The further progress of Software Engineering Economics field depends on how clearly we software engineers can understand the quantitative and economic aspects of our decision situations. Only when these decision situations become more clearly illuminated we can study them in more detail and achieve a quantitative understanding of the software engineering process. The precise knowledge of the data involved is essential to make further progress in the field.
7 References

BOEHM, BARRY. (1981), Software Engineering Economics. Prentice Hall 1981.

Banker, R. and S.A, Slaughter. "The moderating effects of structure on volatility and complexity in software enhancement," Information Systems Research, 11, 3, (September 2000), 219-240.
Banker, R. D., H. Chang and C. Kemerer. "Evidence on economies of scale in software development," Information and Software Technologies, 36, 5, (May 1994), 275-282.
Qing, H, R.T. Plant, and D.B. Hertz. "Software cost estimation using economic production models," Journal of Management Information Systems, 15, 1, (Summer 1998), 143-163.
